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DISTURBANCE-MEDIATED COMPETITION AND THE SPREAD OF

PHRAGMITES AUSTRALISIN A COASTAL MARSH
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Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 USA

Abstract. In recent decades the grass Phragmites australis has been aggressively in-
vading coastal, tidal marshes of North America, and in many areas it is now considered a
nuisance species. While P. australis has historically been restricted to the relatively benign
upper border of brackish and salt marshes, it has been expanding seaward into more phys-
iologically stressful regions. Here we test aleading hypothesis that the spread of P. australis
is due to anthropogenic modification of coastal marshes. We did a field experiment along
natural borders between stands of P. australis and the other dominant grasses and rushes
(i.e., matrix vegetation) in a brackish marsh in Rhode Island, USA. We applied a pulse
disturbance in one year by removing or not removing neighboring matrix vegetation and
adding three levels of nutrients (specifically nitrogen) in a factorial design, and then we
monitored the aboveground performance of P. australis and the matrix vegetation. Both
disturbances increased the density, height, and biomass of shoots of P. australis, and the
effects of fertilization were more pronounced where matrix vegetation was removed. Clear-
ing competing matrix vegetation also increased the distance that shoots expanded and their
reproductive output, both indicators of the potential for P. australis to spread within and
among local marshes. In contrast, the biomass of the matrix vegetation decreased with
increasing severity of disturbance. Disturbance increased the total aboveground production
of plants in the marsh as matrix vegetation was displaced by P. australis. A greenhouse
experiment showed that, with increasing nutrient levels, P. australis allocates proportionally
more of its biomass to aboveground structures used for spread than to belowground struc-
tures used for nutrient acquisition. Therefore, disturbances that enrich nutrients or remove
competitors promote the spread of P. australis by reducing belowground competition for
nutrients between P. australis and the matrix vegetation, thus allowing P. australis, the
largest plant in the marsh, to expand and displace the matrix vegetation. Reducing nutrient
load and maintaining buffers of matrix vegetation along the terrestrial-marsh ecotone will,
therefore, be important methods of control for this nuisance species.
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INTRODUCTION

Humans are increasingly modifying coastal land-
scapes. Urban and agricultural development along the
terrestrial border of estuaries has increased nutrient
load and physically impacted species of plants within
coastal, tidal marshes (Adam 1990, Valielaet al. 1997,
Vitousek et al. 1997). Such disturbances can alter the
relative abundance of species and their interspecific
interactions, leading to dramatic changes in the pro-
duction and assemblage structure of plants within
marshes (Boyer and Zedler 1998, Zedler 2000, Pen-
nings and Bertness 2001, Zedler et al. 2001, Bertness
et a. 2002). Theory predicts that competitive inter-
actions among plants may be mediated by disturbances
that affect the availability of limiting resources such
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as nutrients or light (Tilman 1982, 1988). Physical dis-
turbance may increase the availability of resourcesin-
directly by removing competing species that share
common resources, and disturbances such as nutrient
enrichment may directly enhance resource availability
(e.g., Turkington et al. 1993, Wilson and Tilman 1993).
Under conditions of elevated resource availability, spe-
cies of plants may expand their distribution because
they can now withstand more stressful abiotic condi-
tions or outcompete species that were superior com-
petitors when resources were limiting.

Interspecific competition and tolerance to abiotic
stress are important factors influencing the zonation of
the dominant plantsin coastal, salt marshes of southern
New England, USA (Bertness and Ellison 1987, Bert-
ness 1991a, b). Fertilization experiments by Levine et
al. (1998) and Emery et al. (2001) have shown that the
competitive hierarchy among these dominant species
may be reversed when nutrient limitation is removed,
particularly nitrogen, which is an important limiting
nutrient of coastal marshes (Valielaand Teal 1974, Val-
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iela et al. 1985). While these studies predict that in-
creased nutrient load may alter the assemblage struc-
ture of plantsin coastal salt marshes of southern New
England, they fail to consider the dynamics of a com-
mon and increasingly dominant member of the marsh
plant assemblage, the grass Phragmites australis,
which over the past century has been aggressively in-
vading coastal marshes of North America (see reviews
in Marks et al. 1994, Tiner 1997, Chamberset al. 1999,
Meyerson et al. 2000). Phragmites australis (often
called ““common reed”’ and hereafter referred as Phrag-
mites) has been a minor component of the assemblage
of plants along the relatively benign upper border of
freshwater and brackish marshes for several thousands
of years (Niering et al. 1977, Clark 1986, Orson et al.
1987). Now, however, it has been expanding seaward
into more physiologically stressful regions of the low
marsh and along the upper border of salt marshes,
sometimes into areas in which it was historically ab-
sent. There is great concern that the continued spread
of Phragmites will reduce local and regional plant di-
versity, change the composition and diversity of the
fauna associated with these plants, and alter ecosystem
function, particularly nitrogen cycling, within coastal
marshes (Chambers 1997, Chambers et al. 1999, Win-
dham and Lathrop 1999, Keller 2000, Meyerson et al.
2000, Warren et al. 2001). Indeed, in some areas of
North America, Phragmites is currently regarded as a
nuisance or noxious weed and has displaced native
marsh plants, forming vast monocultures (see reviews
cited above; but see Osterdorp [1989] and van der Put-
ten [1997] for concern over the decline of Phragmites
australis in Europe).

A leading explanation for the recent spread of Phrag-
mites is that anthropogenic modification of coastal
marshes has produced environmental conditions con-
ducive to its establishment, growth, and expansion
(Niering and Warren 1980, Mook and van der Toorn
1982, Roman et al. 1984, Hellings and Gallagher 1992,
Burdick et al. 2001), although there is also evidence
indicating that the invasion of Phragmites may be due
to the recent introduction of a nonnative genotype that
can tolerate a broader range of environmental condi-
tions (Saltonstall 2002). Three main changes to envi-
ronmental conditions along the upper border of coastal
marshes have been implicated as favorable to the
spread of Phragmites: increased freshwater input, in-
creased nutrient load, and increased clearing of vege-
tation. Observations indicate that Phragmites thrives
in physically disturbed areas, but grows poorly under
low-nutrient conditions (Haslam 1972, Niering and
Warren 1980, Roman et al. 1984, Phillips 1987, Gervais
et al. 1993). Therefore, when not disturbed the spread
of Phragmites may be limited by belowground com-
petition for nutrients with the other dominant marsh
plants, whereas under disturbance conditions Phrag-
mites may flourish because it is released from com-

DISTURBANCE AND PHRAGMITES SPREAD

1401

petition and critical nutrient resources are no longer
limiting.

We hypothesized that the combined disturbances of
increased nutrients and the clearing of competing
marsh vegetation provides an environment that facili-
tates the spread of Phragmites, even under harsh abiotic
conditions. We tested this hypothesis by examining
how the availability of nutrient resources (particularly
nitrogen) mediates competition between Phragmites
and the other dominant grasses and rushesin abrackish
marsh in Rhode Island, USA. Here we report the results
of afield experiment where we applied a pulse distur-
bance (removal of neighboring species of marsh veg-
etation and the addition of nutrients in a factorial de-
sign) along natural borders between stands of Phrag-
mites and the other marsh vegetation, and then moni-
tored the aboveground performance of all species after
the disturbance was removed. To gain insight into the
mechanism by which Phragmites competes with the
other species of marsh plants under different nutrient
conditions, we did an experiment in the greenhouse
examining the above- and belowground response of
individual Phragmites plants to increasing levels of
nutrients. By determining how disturbance mediates
competition between Phragmites and the other domi-
nant plants in the marsh, strategies for managing the
invasion and control of Phragmites can be developed.

METHODS
Location studied

The study was done from May 1997 to October 1998
at a coastal, brackish marsh along the Barrington River,
Seekonk, Rhode Island, USA (41°46’ N, 71°19" W).
The marsh islocated in asuburban areaand is bordered
by farms, residential buildings, paved roadways, and
forest. The marsh is relatively narrow (<100 m at its
widest), but extends hundreds of meters along the river
and its tributaries, which is typical of coastal marshes
in the region. Plants occupying the marsh are typical
of coastal, brackish and salt marshes in southern New
England, with the marsh dominated by clonal, peren-
nial species arranged in zones across an elevation gra-
dient (Miller and Egler 1950, Redfield 1972, Nixon and
Oviatt 1973, Niering and Warren 1980, Bertness and
Ellison 1987). The grass Spartina alterniflora domi-
nates the low marsh and riverbanks. The high marsh
is occupied by the grass S. patens on its seaward side
and by the rush Juncus gerardi on its landward side,
with the grass Distichlis spicata distributed throughout
(hereafter these three species are referred to collec-
tively as ‘“matrix vegetation’’). The highest elevations
of the marsh, which include the upper border of the
high marsh and the levees of the river, are dominated
by stands (10s to 100s m? in area) of Phragmites, but
the shrub Iva frutescens occupies these areas in some
places. Phragmites covers <10% of the marsh, but it
iscurrently spreading. Other common plantsin the high
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marsh include Aster tenuifolius, Atriplex patula var.
hastata, Salicornia europaea, Scirpus spp., and Soli-
dago sempervirens. We have recorded water salinities
along the river ranging from 2 to 30 g/kg and soil
porewater salinities at the soil surfacein quadratsalong
the highest elevations of the marsh (see Field experi-
ment, below) ranging from 4 to 32 g/kg (average values
for each of three dates during the growing season were
11 + 0.5, 24 + 0.4, and 24 = 0.8 g/kg [mean = 1 sg],
n = 36 soil porewater salinity samples; T. E. Min-
chinton, unpublished data). Tides are semi-diurnal with
a maximal range of ~2.4 m.

Phragmites australis

Phragmites is a clonal grass with annual shoots and
perennial rhizomes that often forms monospecific
stands in coastal, tidal marshes. Growth and expansion
of Phragmitesis primarily vegetative and not by seed,
where rhizomes extend horizontally and give rise to
new shoots. In coastal, tidal marshes of southern New
England, new shoots of Phragmites emerge mainly in
spring (April through May), grow rapidly over the next
one or two months, and attain a maximal height (typ-
ically 1-4 m) by August (Buck 1995, Tiner 1997, Mey-
erson et al. 2000). Shoots develop terminal inflores-
cences from late summer to early autumn (August
through September), and seeds mature until late au-
tumn. Shoots that emerge in the spring senesce in the
autumn (as does the matrix vegetation), but typically
remain upright for several years (often called ** standing
dead’’). From the end of the growing season and
throughout autumn Phragmites shunts resources from
senescing shoots to its rhizomes, which extend hori-
zontally and give rise to vertical rhizomes with buds
lying beneath the soil surface, thus setting the patterns
of emergence for shoots in the following spring (Has-
lam 1969).

Field experiment

Experimental design.—The experiment was done at
the highest tidal elevations of the marsh where isolated
stands of Phragmites along the upper border of the high
marsh and the levees of the river are expanding into
the lower tidal elevations of the marsh. From late May
to early June 1997, after the springtime emergence of
Phragmites, 36 quadrats separated by at least 2 m and
with roughly equal densities of newly emerged shoots
were distributed across seven stands of Phragmites.
Four stands were clustered on one side of the marsh
and three on the other side. The two groups of stands
extended along 100-m sections of the marsh and were
separated by 300 m and a tidal creek and causeway
that extended partially through the middl e of the marsh.
To account for unknown variation due to the spatial
separation of the two groups of stands, we took a cau-
tious approach and considered each group as separate
sites and located half the quadrats (i.e., 18 quadrats)
at each site. Quadrats (6 m?) straddled the natural bor-
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der along the edge of the stand where Phragmites is
spreading into the lower elevations of the marsh dom-
inated by matrix vegetation. One half of the quadrat
was located within the stand (2 m along the natural
border and 1.5 m into the stand) and the other half in
the matrix vegetation (2 m along the natural border and
1.5 minto the matrix vegetation). The half of the quad-
rat within the stand contained a mixture of Phragmites
shoots and matrix vegetation and was used to estimate
growth of Phragmites within the stand, whereas the
other half of the quadrat contained matrix vegetation
with only an occasional Phragmites shoot and was used
to estimate expansion of Phragmites into the lower
elevations of the marsh. In each quadrat, at least two
and usually all three of the species comprising the ma-
trix vegetation were present, with other common plants
occurring sporadically.

Two disturbance treatments (removal or no removal
of matrix vegetation, three levels of nutrient addition)
in afactorial design were randomly allocated to the 18
quadrats at each site, producing three replicates of each
of the six treatment combinations per site. Treatments
were applied as a discrete pulse from early August to
late September 1997, after which quadrats were no lon-
ger manipulated. This pulse disturbance simulated re-
ality, such as the discrete application of fertilizers to
lawns, golf courses, or crops and the periodic clearing
and mowing of marsh vegetation. Disturbances of this
type often occur at the end of the growing season in
late summer and early autumn when rhizomes are stor-
ing nutrients for growth and expansion in the following
spring.

Matrix vegetation was removed by cutting it with
grass clippers to a height of about 2 cm, and other
species of plants that were occasionally present were
also removed. Marsh turf that regrew was continually
cut at two-week intervals. Nutrients were added in the
form of granular, commercial 29:3:4 N:P:K fertilizer
(Scotts Turf Builder Lawn Fertilizer with timed-release
nitrogen [The Scotts Company, Marysville, Ohio,
USA]) comprised of 29% N (0.5% ammoniacal N,
15.6% urea, 12.4% water-soluble organic N, and 0.5%
water-insoluble N), 3% phosphorus (3% phosphoric
acid) and 4% potassium (4% soluble potash). Three
levels of nutrient addition, 0 g/m?, 30 g/m?, or 60 g/
m?, were applied four times at roughly two-week in-
tervals by spreading the fertilizer evenly across the soil
surface. Nutrients were added at times of neap tides so
that leaching and dilution would be minimized. There
was no evidence of burning of vegetation following
nutrient addition. This amount and frequency of nu-
trient addition was selected to give specific levels of
N addition, 0 g-m=2yr=t, 35 gm-2yr-t and 70
g-m-2-yr-1. These levels of nitrogen addition are at the
lower limit of those applied annually to golf courses
in the region (see Valiela et al. 1997) and are within
the range used in similar studies examining the effects
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of N addition on salt-marsh plants (see Boyer and Zed-
ler 1998).

Sampling times and response variables.—To deter-
mine the immediate response of Phragmites to the dis-
turbance treatments, quadrats were sampled at the end
of the growing season, late September 1997. Only
shoots that emerged after the treatments had been ap-
plied were sampled. To provide baseline levels against
which to compare growth and expansion in 1998,
shoots of Phragmites and tillers of the matrix vege-
tation that emerged throughout the growing season in
1997 were sampled in control quadrats (i.e., no removal
of matrix vegetation, no addition of nutrients) at this
time. Quadrats were sampled again in late September
1998 to determine how the pulse disturbance applied
during 1997 influenced the performance of Phragmites
and the matrix vegetation during the next growing sea-
son. Only live shoots and tillers were sampled, not
standing-dead shoots of Phragmites or dead matrix
vegetation.

The performance of Phragmites was quantified by
measuring response variables relating to its size, mor-
phology, leaf display, reproductive output, and expan-
sion. In 1997 and 1998 the densities and heights of 20
shoots were counted in both the growth and expansion
halves of the quadrat. The dry biomass of these shoots
was estimated by multiplying shoot density and mean
biomass per shoot. Biomass for each of the 20 shoots
was determined using regression equations relating the
heights of shoots to their dry biomass. Regression
equations were obtained, one for each site, by collect-
ing shoots ranging in height from 5 to 254 cm (with
about 5 shoots in each 10-cm height category) and then
determining their biomass in grams after drying them
in an oven to a constant mass at 60°C and weighing
them (site 1, In biomass = 1.63[In height] — 5.87; site
2, In biomass = 1.87[In height] — 6.86; T. E. Min-
chinton, unpublished data). The maximal distance that
Phragmites expanded into the lower elevations of the
marsh was estimated in 1997 by measuring the distance
between the two shoots that extended farthest into the
marsh before and after treatment application, and in
1998 by measuring the distance between the two shoots
that extended farthest into the marsh in 1997 and 1998.

Additional variables relating to the morphology of
individual Phragmites shoots were quantified in 1998
for 20 shoots haphazardly selected throughout the
quadrat. The numbers of nodes and leaves of each shoot
were counted. Mean internode length for each shoot
was calculated by dividing shoot height by the number
of internodes. The areas of individual leaves (leaf
blades only, not sheaths) were estimated by measuring
the maximal lengths and widths of two leaves (exclu-
sive of the top and bottom leaves) haphazardly sel ected
from each shoot, and calculating their areas (one side
only) by assuming that leaves are shaped like a rect-
angle (for the half of the leaf closest to the stem) with
adistal triangle (for the second half of the leaf). Leaf
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area per shoot was estimated by multiplying the mean
area per leaf by the number of leaves per shoot. Re-
productive output of Phragmites was quantified in each
quadrat by counting the number of shoots with inflo-
rescences and cal culating the percentage of shootswith
inflorescences.

In 1997 and 1998, response variables indicating the
performance of each species comprising the matrix
vegetation (J. gerardi, S. patens, D. spicata) were also
measured. Two samples (15 X 15 cm) of the matrix
vegetation were collected from the half of the quadrat
within the stand of Phragmites. For each species in
each sample, the number of tillers was counted, the
height of five tillers was measured, and the biomass
was determined after drying them in an oven to a con-
stant mass at 60°C and weighing them. Because each
species was not present in every quadrat, data for the
three species were pooled and analyzed collectively as
matrix vegetation.

Satistical analyses.—The relevant hypothesis to be
tested by this experiment is that the performance of
Phragmites (and the matrix vegetation) in response to
nutrient addition is dependent on the presence or re-
moval of competing matrix vegetation (i.e., thereis an
interaction between the two disturbance treatments in
their effect on the response variables). This was done
using a two-factor analysis of variance (ANOVA) with
nutrients and matrix vegetation considered as fixed ef-
fects. Results from the two sites were qualitatively the
same, and our initial cautious approach to consider
groups of stands on opposite sides of the marsh as
separate sites in the design was unwarranted. Conse-
quently, to increase statistical power of the analysisto
detect differences due to disturbance treatments, we
pooled the data across sites. Such pooling requires that
we ignore error variation that might have occurred had
we randomly allocated treatmentsto all quadrats at both
sites rather than restricting the random allocation of
treatments to quadrats at each site. The consistency of
the response of Phragmites and matrix vegetation to
treatment manipulations between sites indicates that
thisvarianceislikely to be small relativeto other sourc-
es of error and, therefore, pooling is justified. All de-
pendent variables were transformed to their natural |og-
arithms, except for proportion data, which were trans-
formed to the arcsine of their square roots.

Greenhouse experiment

Experimental design.—An experiment was set up in
the greenhouse to determine how nutrients, in the ab-
sence of competitors and under benign abiotic condi-
tions, influence changes in the size, morphology, |eaf
display, and biomass allocation of Phragmites. This
experiment was done to help interpret the results of the
field experiment, particularly by determining the rel-
ative allocation to above- and belowground structures,
which is impossible to assess in the field for such a
large plant as Phragmites without considerabl e destruc-
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tion to the marsh. Seeds were collected from multiple
stands within the marsh, sprinkled across the surface
of commercial potting soil in large plastic trays, cov-
ered with a fine layer of soil, and watered daily with
tap water. Seedlings appeared within two weeks and
were individually transplanted into 2-L pots with com-
mercial potting soil and watered daily with tap water.
After one week, 30 hardy plants of roughly the same
size (single shoot, 9.4 = 0.48 cm, [mean = 1 sg], n =
30 plants) were selected and equal numbers (n = 6)
were randomly assigned to one of five levels of nutrient
addition—0 g/m?, 30 g/m?, 60 g/m?, 120 g/m?, or 240
g/m?>—of the same fertilizer used in the field experi-
ment. Nutrients were applied only once and in the same
manner as in the field experiment, giving nitrogen lev-
els of about 0 gm-2yr-1, 9 gm-2yr-1, 17 g-m-2.yr-1,
35 gm-2yr-1, and 70 g-m-2yr-1, respectively, which
spanned the range used in the field experiment. Plants
were watered daily with tap water and maintained under
ambient light and temperature conditions. Pots were
randomly arranged in an array so that treatments were
intermixed and their positions were re-randomized ev-
ery three or four days. The experiment began on 1
August 1997 and ended on 1 September 1997, at which
time plants had more than doubled in size.

Response variables.—Several response variablesin-
dicating the performance of Phragmites were measured
at the end of the experiment, including the number of
shoots, the height of each shoot, the number of leaves
on each shoot, the area of individual leaves (leaf blades
only, not sheaths), and the length of rhizomes. Shoot
length was calculated as the sum of the heights of all
shoots. The areas of individual leaves were measured
as described previously (see Field experiment: sam-
pling times and response variables). Leaf area of each
plant was calculated by multiplying mean area per | eaf
by the total number of leaves. Plants were then har-
vested and above- (stems with leaf sheaths and |eaf
blades separately) and belowground (roots and rhi-
zomes separately) dry biomass was determined by dry-
ing the plants in an oven to a constant mass at 60°C
and weighing them. Additional response variables for
each plant were derived from these primary measure-
ments: specific leaf area (SLA = leaf area/leaf bio-
mass), leaf arearatio (LAR = leaf area/total plant bio-
mass), specific rhizome length (SRL = rhizome length/
rhizome biomass), stem mass ratio or fraction (SMR
= stem biomass/total plant biomass), leaf mass ratio
(LMR = leaf biomass/total plant biomass), root mass
ratio (RTMR = root biomass/total plant biomass), and
rhizome mass ratio (RHMR = rhizome biomass/total
plant biomass).

Satistical analyses—There are two relevant hy-
potheses to be tested by this experiment. The first is
simply that plant performance varies with nutrient ad-
dition, and this was tested using a one-factor analysis
of variance (ANOVA). Initial size was not included as
a covariate because plants were selected to be roughly
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the same initial size. Significant differencesin the per-
formance of Phragmites with nutrient addition may,
however, be due to the effects of allometry as the plant
size changes with nutrient addition or to the effects of
nutrient addition itself independent of plant size (Poort-
er and Nagel 2000). Therefore, the second hypothesis
was that plant performance varies with nutrient addi-
tion independent of plant size, and this was tested using
one-factor analysis of covariance (ANCOVA), with to-
tal plant biomass at the end of the experiment as the
covariate accounting for potential allometric effectsre-
sulting from differences in plant size. Testing both hy-
potheses is important as they lead to different insights
about the mechanisms that govern the response of
Phragmites to fertilization. The covariate and all de-
pendent variables were transformed to their natural log-
arithms, except for the proportion data, which were
transformed to the arcsine of their square roots.

REsuLTS
Field experiment

Response of Phragmitesin 1997.—There was arapid
and dramatic response of Phragmitesto the disturbance
of clipping matrix vegetation and fertilization (Fig. 1).
Only two weeks after the first treatment application,
new shoots began to emerge. Removing matrix vege-
tation or adding nutrients increased both the densities
and heights of shoots growing within the stand and
those expanding into the marsh (all significant effects
except for nutrients on the density of shoots expanding
into the marsh; Fig. 1, Table 1). Shoots within the stand
were of similar heights to those expanding into the
marsh, but ~4 times as many shoots emerged from
within the stand (Fig. 1). Under the most severe dis-
turbance treatment (matrix vegetation removed, highest
level of nutrients), the density of newly emerged shoots
(~30 shoots/m?) was almost equal to the number that
had emerged throughout the entire growing season in
control quadrats (~41 shoots/m?) (Fig. 1 and see
dashed line in Fig. 2).

The effect of nutrients on the biomass of new shoots
emerging within the stand or expanding into the marsh
was dependent on the presence of matrix vegetation
(Fig. 1, significant interaction in Table 1). There was
no effect of nutrients in the presence of matrix vege-
tation, where only the buds of new shoots pierced the
soil surface, and these contributed little biomass (Fig.
1). In contrast, fertilization where matrix vegetation
had been cleared significantly increased the biomass of
Phragmites, as shoots grew relatively tall and produced
leaves (the largest shoot was 71 cm with nine leaves)
(Fig. 1). Shoots expanded at least 3 times and signif-
icantly farther where matrix vegetation had been re-
moved than where it was naturally present (Fig. 1, Ta-
ble 1). Nutrient addition did not significantly influence
expansion, but shoots under the most severe distur-
bance treatment expanded twice as far as those in any
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other treatment, and almost as far as those that had
been growing throughout the growing season in control
quadrats (Fig. 1 and dashed line in Fig. 2, Table 1).
Response of Phragmites in 1998.—The disturbances
applied at the end of the growing season of 1997 had
a strong influence on the growth and expansion of
Phragmites during 1998. Many of the effects on Phrag-
mites in 1998 were qualitatively similar to those im-
mediately following the application of treatments in
1997, but their magnitudes were reduced (compare
Figs. 1 and 2). Removal of matrix vegetation in 1997

produced a significant increase and a doubling of the
density of shoots emerging within the stand and ex-
panding into the marsh by the end of the growing sea-
son of 1998 (Fig. 2, Table 2). Fertilization, in contrast,
did not affect the density of shoots, although there was
a general trend for shoot density to be greater where
more nutrients had been added (except for shoots ex-
panding into the marsh where matrix vegetation had
been removed; Fig. 2, Table 2). In control quadrats,
about the same number of shoots emerged in 1998 as
in 1997, whereas shoots in areas subjected to the most
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TaBLE 1. Results of two-factor analyses of variance for the effect of matrix vegetation (Veg.;
present or removed, df = 1, 30), nutrient addition (Nut.; three levels, df = 2, 30), and their
interaction (df = 2, 30) on Phragmites shoot density, height, and biomass, and expansion
distance of Phragmites emerging within the stand (i.e., growth) and expanding into the marsh
(i.e., expansion) in 1997 (see data in Fig. 1).

Ecological Applications

Vegetation

Nutrients

Veg. X Nut.

Residual
Variable MS F MS F MS F MS
Growth
Density 13.87 48.0%** 1.70 5.9%* 0.04 0.1 Ns 0.29
Height 15.45 92.3*** 1.90 11.3*** 0.35 2.1nNs 0.17
Biomass 36.21 190.4*** 4.46 23.5%** 2.70 14.2%** 0.19
Expansion
Density 9.48 34.8%** 0.40 1.5nNs 0.20 0.7 Ns 0.27
Height 16.40 115.5%** 1.46 10.3*** 0.21 1.4 NS 0.14
Biomass 10.04 39.4*%** 1.21 4.8* 0.92 3.6* 0.25
Distance 32.83 18.3*** 0.19 0.1 nNs 0.42 0.2 Ns 1.80

* P < 0.05; ** P < 0.01; *** P < 0.001; Ns = not significant.

severe disturbance treatment had more than double the
density of shoots as control quadrats (Fig. 2). In con-
trast to its substantial effect on the density of shoots,
clearing matrix vegetation did not affect the heights of
shoots (Fig. 2, Table 2). Nutrient addition, in contrast,
produced significantly taller shoots within the stand,
but, as for the density of shoots, this was not evident
for shoots expanding into the marsh where matrix veg-
etation had been removed (Fig. 2, Table 2). In all treat-
ments, including controls, shoots were 30-80% taller
in 1998 than in control quadrats in 1997 (Fig. 2).
Differences in the biomass of Phragmites reflected
the densities and heights of shoots. There was a sig-
nificant effect of the removal of matrix vegetation on
the biomass of shoots emerging within the stand and
expanding into the marsh (Fig. 2, Table 2). Nutrient
addition increased the biomass of Phragmites, but this
was only significant within the stand because, again,
shoots expanding into the marsh where matrix vege-
tation had been cleared followed the opposite trend
(Fig. 2, Table 2). The biomass of Phragmitesin control
quadrats almost doubled in 1998 compared to 1997,
indicating that even under ambient conditions Phrag-
mites is expanding (Fig. 2). Under the most severe
disturbance treatment, the biomass of Phragmites at
the end of the growing season of 1998 was an order
of magnitude greater than under ambient conditions at
the end of the previous year (Fig. 2). In two of the
three treatments where matrix vegetation had been re-
moved, the biomass of Phragmites that expanded into
the marsh in 1998 was greater than in the control treat-
ment within the stand in 1997, representing a dramatic
expansion of the stand into the lower elevations of the
marsh in only one growing season. As in the previous
year, the distance that shoots expanded into the marsh
was influenced by the removal of matrix vegetation,
but not by the addition of nutrients (Fig. 2, Table 2).
For both years combined, under the most severe dis-
turbance treatment shoots expanded, on average, 148

cm into the marsh, with the maximal expansion dis-
tance in one quadrat of 217 cm.

The effects of clearing matrix vegetation and adding
nutrients on the internode length of shoots were gen-
erally the same as those on their heights, indicating
that the increase in shoot height with fertilization re-
flects a significant lengthening of the internode rather
than a greater number of nodes (Fig. 3, Table 3). Given
this similarity in the number of nodes per shoot, it is
not surprising that the number of leaves per shoot was
not significantly different among treatments (Fig. 3,
Table 3). In contrast to their numbers, however, the
surface areas of individual leaves were significantly
larger in the presence of matrix vegetation than where
it had been removed in the previous year, and leaf area
was positively related to the level of fertilization (pri-
marily because leaves were longer) (Fig. 3, Table 3).
Consequently, differences among treatments in |eaf
area per shoot reflected the surface areas of individual
leaves and not their numbers (Fig. 3, Table 3).

Disturbances applied in 1997 also affected the re-
productive output of Phragmites in 1998. Removal of
matrix vegetation generated about twice as many and
significantly greater densities of inflorescences com-
pared to quadrats with natural vegetation (Fig. 3, Table
3). Inflorescences were roughly the same size in all
treatments, suggesting that this doubling in number
represents a doubling in seed production. When ex-
pressed as a percentage of shoot density, however, this
difference disappeared, indicating that reproductive
output was related to the increased density of shoots
due to the removal of matrix vegetation. In contrast,
fertilization had no influence on the production of in-
florescences (Fig. 3, Table 3).

Response of matrix vegetation in 1998.—The pro-
duction of matrix vegetation in 1998 was also influ-
enced by the disturbances applied at the end of the
growing season of 1997, but in contrast to Phragmites,
the abundance of matrix vegetation declined with in-
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Fic. 2. Phragmites shoot density, height, and biomass, and expansion distance of Phragmites emerging within the stand
(i.e., growth) and expanding into the marsh (i.e., expansion) in the presence (+Veg.) or absence (—Veg.) of matrix vegetation
at each of three levels of nutrient addition (zero = 0 g N-m-2-yr~%, one = 35 g N-m~2.yr-%, and two = 70 g N-m~2yr-1) in
1998. Data are means + 1 se. Dotted lines indicate mean levels in control quadrats in 1997.

creasing severity of disturbance. Removal of matrix
vegetation did not affect the density of tillers that
emerged in the subsequent year, but tillers were sig-
nificantly shorter where matrix vegetation had been
cleared (Fig. 4, Table 4). Fertilization, in contrast, sig-
nificantly reduced the density of tillers, but increased
their heights (Fig. 4, Table 4). The biomass of the ma-
trix vegetation reflected changes in the densities of til-
lers more than their heights. Fertilization in 1997 sig-
nificantly reduced the biomass of the matrix vegetation
in 1998 and, except in control quadrats, the biomass
was also substantially reduced where matrix vegetation
had been cleared in the previous year (Fig. 4, Table 4).

Under all treatments conditions, matrix vegetation was
taller, less dense, and had a considerably smaller bio-
mass in 1998 than in control quadrats in 1997 (Fig. 4).
Moreover, matrix vegetation covered the entire sub-
stratum in all quadratsin 1997, but by the end of 1998
there were patches of bare soil in all treatments. The
percentage of bare soil was significantly greater where
matrix vegetation had been cleared in the previousyear,
and there was a nonsignificant trend where matrix veg-
etation was removed for more bare soil with increasing
nutrient addition (Fig. 4, Table 4). Although each spe-
cies comprising the matrix vegetation was not repre-
sented in all quadrats (and thus could not be analyzed
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TaBLE 2. Results of two-factor analyses of variance for the effect of matrix vegetation (Veg.;
present or removed, df = 1, 30), nutrient addition (Nut.; three levels, df = 2, 30), and their
interaction (df = 2, 30) on Phragmites shoot density, height, and biomass, and expansion
distance of Phragmites emerging within the stand (i.e., growth) and expanding into the marsh

(i.e., expansion) in 1998 (see data in Fig. 2).

Vegetation

Nutrients

Veg. X Nut.

Residual

Variable MS F MS F MS F MS
Growth

Density 4.141 33.4*%** 0.357 29nNs 0.001 <0.1nNs 0.124

Height 0.004 0.3 Ns 0.058 5.5** <0.001 <0.1 Ns 0.011

Biomass 4.659 24.5%** 1.004  5.3* 0.005 <0.1 Ns 0.190
Expansion

Density 3.497 11.7%* 0.028 0.1 ns 0.173 0.6 NS 0.299

Height 0.003 0.1 Ns 0.019 09ns 0.068 3.1nNs 0.022

Biomass 4.529 7.7%* 0.146 0.2 Ns 0.757 1.3 Ns 0.586

Expansion 1.407 7.9%* 0.057 0.3 nNs 0.003 <0.1 Ns 0.179

* P < 0.05; ** P < 0.01; *** P < 0.001; Ns = not significant.
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Fic. 3. Internodelength, number of leaves per shoot, area per leaf, | eaf area per shoot, inflorescence density, and percentage
of shoots with inflorescences for shoots of Phragmites throughout the quadrat in the presence (+Veg.) or absence (—Veg.)
of matrix vegetation at each of three levels of nutrient addition (zero = 0 g N-m=2yr=%, one = 35 g N-m~2-yr~%, and two =

70 g N-m~2yr-1) in 1998. Data are means + 1 SE.
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TaBLE 3. Results of two-factor analyses of variance for the effect of matrix vegetation (Veg.; present or removed, df = 1,
30), nutrient addition (Nut.; three levels, df = 2, 30), and their interaction (df = 2, 30) on various estimates of performance
for shoots of Phragmites throughout the quadrat in 1998 (see data in Fig. 3).

Vegetation Nutrients Veg. X Nut. Residual
Shoot variable MS F MS F MS F MS
Internode length 0.001 0.3 Ns 0.071  17.1*%** <0.001 0.1nNs 0.004
No. leaves per shoot <0.001 <0.1 Ns 0.019 1.2 Ns 0.017 1.1ns 0.016
Area per |eaf 0.204 6.2* 0.362  11.2%** 0.015 04nNs 0.032
Leaf area per shoot 0.219 3.2 Ns 0.245 3.6* 0.054 0.8nNs  0.068
Inflorescence density 2.932 6.2* 0.172 0.4 Ns 0.296 0.6 Ns 0471
Percentage shoots with inflorescences 0.003 0.1 Ns 0.016 0.6 NS 0.012 0.5Ns  0.025

* P < 0.05; ** P < 0.01; *** P < 0.001; Ns = not significant.

separately), Juncus gerardi, Spartina patens, and Dis-
tichlis spicata responded in the same way to the treat-
ment manipulations.

Total plant production.—Total plant biomass
(Phragmites and matrix vegetation combined) within
the stand in 1998 was positively related to the severity
of the disturbance applied in 1997 (Fig. 5). Total plant
biomass was greater where matrix vegetation had been
removed and nutrients had been added, although the
latter was not significant (two-factor ANOVA: vege-
tation, F, 5 = 15.4, P < 0.001; nutrients, F,5, = 0.9,
P > 0.40). Therelative contribution of Phragmitesand
matrix vegetation to total plant biomass followed op-
posite trends. Aboveground biomass increased with the
severity of the disturbance for Phragmites, whereas it

decreased for the matrix vegetation, indicating that
Phragmites was displacing the matrix vegetation under
disturbance conditions.

Greenhouse experiment

The addition of nutrients influenced the above- and
belowground size, morphology, and biomass allocation
of individual plants grown in pots in the greenhouse
(Fig. 6), producing many of the same changes observed
when Phragmites was fertilized in the field. Many of
the performance variables exhibited a curvilinear re-
sponse to fertilization, with the largest increases or
decreases at the lower nutrient levels followed by a
gradual levelling off at higher nutrient levels (Fig. 6).
Total plant biomass and the number of shoots were
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FiG. 4. Density, height, and biomass of tillers of matrix vegetation and the percentage of bare soil within the stand of
Phragmites in the presence (+Veg.) or absence (—Veg.) of matrix vegetation at each of three levels of nutrient addition (zero
= 0gNm-—2yr one = 35gN-m-2yr-t and two = 70 g N-m=2yr-1) in 1998. Data are means + 1 st. Dotted lines indicate
mean levels in control quadrats in 1997 (including 0% bare soil not shown on graph).
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TaBLE 4. Results of two-factor analyses of variance for the effect of matrix vegetation (Veg.;
present or removed, df = 1, 30), nutrient addition (Nut.; three levels, df = 2, 30), and their
interaction (df = 2, 30) on tiller density, height, and biomass of matrix vegetation and
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percentage of bare soil within the stand of Phragmites in 1998 (see data in Fig. 4).

Vegetation Nutrients Veg. X Nut. Residual
Variable MsS F MS F MsS F MS
Density 0.036 0.1 Ns 2.329 8.1** 0.302 1.0 Ns 0.289
Height 0.133 5.2* 0.120 4.7* 0.017 0.7 Ns 0.026
Biomass 0.724 2.4 Ns 1.050 3.4* 0.267 0.9 Ns 0.307
Bare soil 0.071 5.4* 0.015 1.1 Ns 0.010 0.8 Ns 0.013

* P < 0.05; ** P < 0.01; Ns = not significant.

positively and significantly related to nutrient addition
(Fig. 6, Table 5). Shoot length followed a similar, al-
though nonsignificant trend, whereas the heights of in-
dividual shoots were significantly reduced by fertiliza-
tion (Fig. 6, Table 5). Consequently, there was a shift
with increasing nutrient level from fewer, taller shoots
to more, shorter ones. There was also a nonsignificant
trend for rhizome length to increase with fertilization,
but specific rhizome length (SRL) was independent of
nutrient addition (Fig. 6, Table 5). The number of
leaves per shoot was not affected by fertilization, but
because shoot density significantly increased with nu-
trient addition so did the total number of leaves (Fig.
6, Table 5). Similarly, the surface area of individual
leaves, leaf area, specific leaf area (SLA), and leaf area
ratio (LAR) were all positively related to nutrient ad-
dition, although for SLA this trend was not significant
(Fig. 6, Table 5). Biomass allocation in response to
nutrient addition varied with plant structure. Allocation
to leaves (i.e., leaf mass ratio [LMR]) was positively
and significantly related to nutrient addition, whereas
allocation to stems (SMR) was not affected by nutrients
(Fig. 6, Table 5). Allocation to belowground structures
was opposite to that for aboveground structures, with
root mass ratio (RTMR) negatively affected by the ad-
dition of nutrients and allocation to rhizomes (rhizome

[J Matrix vegetation

1500 - B Phragmites
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Fic. 5. Biomass of Phragmites and matrix vegetation

within the stand of Phragmites in the presence (+Veg.) or
absence (—Veg.) of matrix vegetation at each of three levels
of nutrient addition (0 = 0g N-m=2.yr=1, 1 = 35 g N-m-2:yr1,
and 2 = 70 g N-m-2.yr-1) in 1998. Data are means + 1 SE.

mass ratio [RHMR]) following a similar, although non-
significant trend (Fig. 6, Table 5). Therefore, there was
proportionally greater allocation to aboveground bio-
mass with increasing nutrient addition.

When analysis of covariance was run for each of the
variables using total plant biomass as a covariate to
account for allometric effects, only one result was dif-
ferent (Table 5). There was no longer a significant in-
crease in the surface area of individual leaves with
nutrient addition, suggesting that these differences
were due to changes in plant size rather than to the
nutrients themselves. Therefore, fertilization has im-
portant effects on the morphology and biomass allo-
cation of Phragmites that are not simply due to allom-
etry as the plant grows. For two variables, RTMR and
RHMR, there was a significant interaction between the
effect of nutrients and the covariate, suggesting that
the relationship between each of these variables and
total plant biomass changes with nutrient level (Table
5).

DiscussioN

Our results demonstrate that disturbance can dra-
matically increase the spread of Phragmites, resulting
in a change in the relative abundance of the dominant
species of plants occupying the highest elevations of
the high marsh. Initial dominance by matrix vegetation
(Juncus gerardi, Spartina patens, and Distichlis spi-
cata) was ceded to Phragmites after less than two grow-
ing seasons. Removing competing matrix vegetation
doubled the growth of Phragmites and increased its
expansion and reproductive output, thus enhancing the
potential for Phragmites to spread within and among
marshes. Nutrient enrichment further enhanced the
aboveground production of Phragmites, producing a
shift in allocation of biomass from structures for nu-
trient acquisition to structures for growth and expan-
sion. By mediating competition between Phragmites
and the species comprising the matrix vegetation, dis-
turbance promotes the spread of Phragmites within
coastal marshes of southern, New England (USA).

Disturbance and the spread of Phragmites

Phragmites expanded rapidly soon after the distur-
bances were applied; the growth and expansion of
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Fic. 6. Estimates of variables representing the size, morphology, and biomass allocation of individual Phragmites plants
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Results of one-factor analyses of variance (ANOVA, df of F ratio = 4, 25) and one-factor analyses of covariance

(ANCOVA) for the effect of nutrients on various estimates of Phragmites performance.

ANOVA ANCOVAT
Nutrients Nutrients Biomass Nut. X Bio.
Variable F P F P F P F P
Size
Biomass 2.8 * -
Shoot length 25 NS 0.4 NS 32.0 el 0.8 NS
Morphology
Number of shoots 12.0 il 7.6 *okk 0.7 NS 0.1 NS
Height per shoot 3.6 * 15.8 *okx 36.9 xkx 2.3 NS
Rhizome length 1.0 NS 0.8 NS 0.3 NS 2.6 NS
Specific rhizome length, SRL 0.1 NS 1.8 NS 16.7 xkx 1.2 NS
Leaves per shoot 1.2 NS 2.8 NS 12.7 * 2.1 NS
Number of leaves 9.8 *kk 5.2 x* 12.0 *x 0.7 NS
Area per leaf 3.1 * 0.9 NS 6.8 * 0.8 NS
Leaf area 15.3 *kk 14.3 *okk 52.4 *okk 1.3 NS
Specific leaf area, SLA 11 NS 1.3 NS 0.9 NS 2.1 NS
Leaf arearatio, LAR 10.0 e 14.2 e 7.8 ** 1.3 NS
Biomass allocation
Stem mass ratio, SMR 0.9 NS 1.2 NS 2.2 NS 13 NS
Leaf mass ratio, LMR 17.7 *kk 26.0 *kk 10.7 *x 2.8 NS
Root mass ratio, RTMR 7.7 el 54 **
Rhizome mass ratio, RHMR 2.4 NS 4.7 *x

* P < 0.05; ** P < 0.01; *** P < 0.001; Ns = not significant.

T Total plant biomass is the covariate in the ANCOVA. For the ANCOVA, where the nutrient X biomass interaction was
significant (df of F ratio = 4, 20) in the original model with nutrients, biomass, and nutrients X biomass, the analysis was
ended because the slopes were not homogeneous. Where the nutrients X biomass was not significant in the original model,
this term was dropped and results presented for nutrients (df of F ratio = 4, 24) and biomass (df of F ratio = 1, 24) are for

a second model fitted with only these two factors.

shoots under the most severe disturbance was almost
equal to that for the entire growing season under am-
bient conditions. The emergence and growth of such
large densities of shoots at the end of the growing
season is atypical for Phragmites under ambient con-
ditions, and demonstrates that Phragmites is extremely
flexible, and capable of taking advantage of favorable
environmental conditions whenever they arise. It isun-
likely, however, that the spread of Phragmites in the
following year was a direct response to the pulse of
disturbance applied in the previous year, because the
clipped matrix vegetation regrew in the following
spring and nutrients added at the end of the summer
are unlikely to be still available (Otto 1997). More
likely, Phragmites *‘ stored’” the additional nutrient re-
sources acquired under disturbance conditions, which
were then manifested in growth during next season.
Indeed, at the end of the summer and throughout au-
tumn, Phragmites is known to shunt resources from its
senescing shoots to its rhizomes, which extend to give
rise to vertical rhizomes with buds lying beneath the
soil surface (Haslam 1969). The late-season expansion
likely established a new baseline from which Phrag-
mites spread during the next growing season. There-
fore, there can be a temporal uncoupling between a
disturbance and the response by Phragmites, which
may make it difficult for managers to determine causal
links between human impacts and patterns of spread
of Phragmites, at least over short time scales.

There was an interaction between the disturbances
in their influence on the production of Phragmites in
1997. Where matrix vegetation was present, the bio-
mass of Phragmites was not affected by fertilization,
but the biomass of Phragmites was directly related to
nutrient supply where aboveground competitors were
removed. Thissuggeststhat the availability of nutrients
for the growth of Phragmites is mediated by compe-
tition with neighboring matrix vegetation (Levine et al.
1998, Emery et al. 2001). This interactive effect sub-
sided in 1998 after the pulse disturbance was removed.
It is probable, however, that if a press disturbance with
continual clearing of matrix vegetation and fertilization
were applied, then the interactive effects of these mul-
tiple stressors would be manifested. Indeed, in terres-
trial habitats, interactions between fertilization and dis-
turbance are known to have significant effects on the
growth and assemblage structure of plants (e.g., Hobbs
and Atkins 1988, Wilson and Tilman 1991, Turkington
et al. 1993). Understanding how disturbances interact
to affect the spread of Phragmites, as well as other
nuisance and invasive species, iscritical for developing
strategies to control this species in coastal marshes.
Indeed, the simple presence of neighboring matrix veg-
etation reduced the production of Phragmites by 50%.
Consequently, an important strategy for controlling, or
at least reducing, the expansion of Phragmites, partic-
ularly in marshes subjected to nutrient enrichment,
would be to maintain buffers of dense, matrix vege-
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tation around existing stands of Phragmites and along
the terrestrial-marsh ecotone.

Disturbance not only affected the size of Phragmites,
but also its morphology. In the field Phragmites re-
sponded to disturbance by increasing the number of
shoots that emerged, not by producing extremely tall
shoots with large numbers of leaves. Under freshwater
conditions in the greenhouse there were similar chang-
es in morphology: Phragmites seedlings produced
more shorter shoots and fewer taller shoots with in-
creasing nutrient levels (see also Clevering 1998). Both
in the field and greenhouse, increased nutrient levels
also generated larger individual |eaves. In contrast, pro-
portionally less plant mass was invested into roots as
nutrient levels increased. Therefore, there is a shift in
biomass allocation with increasing nutrient levels from
belowground structures such as roots to aboveground
structures such as shoots and leaves. Similar changes
in above- to belowground biomass allocation are likely
to have occurred in the field, particularly where neigh-
boring matrix vegetation competing for nutrient re-
sources had been cleared. Such changes in biomass
allocation with increasing nutrient levels have been
widely documented for many plants, including Phrag-
mites (Clevering 1998, Poorter and Nagel 2000), and
represent a fundamental shift in energy expenditure
from structures for belowground acquisition of nutri-
ents to aboveground structures for acquisition of light.

Nutrient enrichment had no influence on the distance
that Phragmites expanded nor on the density of inflo-
rescences it produced, the two best indicators of the
ability of Phragmites to spread within and among
marshes. In contrast, the magnitude of both variables
doubled when neighboring matrix vegetation was
cleared, with the production of inflorescences linked
to the density of shoots. Removing competing matrix
vegetation thus promotes the expansion of stands with-
in marshes (see also Amsberry et al. 2000) and poten-
tially increases the supply of seeds to neighboring
marshes. Again, matrix vegetation may act as a natural
buffer suppressing the local spread of Phragmites.

Mechanisms of Phragmites spread

There are probably two primary mechanisms by
which competing matrix vegetation reduces the growth
and expansion of Phragmites. First, there may be strong
belowground competition for nutrients, particularly ni-
trogen, which is typically limiting in brackish and salt
marshes (Valiela and Teal 1974). In monoculture, nu-
trient addition can increase the biomass of the species
comprising the matrix vegetation (see Emery et al.
[2001], although nutrient levels were greater in their
study), whereas in the presence of Phragmites, fertil-
ization decreased their biomass (this study). Therefore,
when fertilized, Phragmites appears to be using nutri-
ents that would otherwise be available to the matrix
vegetation. Although belowground competition was
not directly assessed in this experiment, the increased
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response of Phragmites to nutrient supply in the ab-
sence of matrix vegetation also provides indirect evi-
dence for such a mechanism. Moreover, Emery et al.
(2001) have demonstrated that belowground competi-
tion for nutrients is an important mechanism deter-
mining the outcome of competitive interactions and the
relative abundance among species comprising the ma-
trix vegetation in coastal marshes (see also Levine et
al. 1998). Second, matrix vegetation may act as a phys-
ical barrier to the emergence and growth of shoots.
Neighboring vegetation surrounding small transplants
of Phragmites can reduce its expansion (Amsberry et
al. 2000), and the emergence and growth of Phragmites
can be suppressed by its own litter (Granéli 1989) and
floating plant debris or wrack stranded in the marsh
(Minchinton 2002a). Consequently, in the absence of
competing matrix vegetation or under elevated nutrient
resources, Phragmites is released from belowground
competition for nutrients. Once released from below-
ground competition, Phragmitesislikely to be a stron-
ger aboveground competitor, even under harsh abiotic
conditions. Disturbance dramatically increased the
density of Phragmites shoots, which likely reduced the
light available to the matrix vegetation beneath the can-
opy of Phragmites. In response, the production of ma-
trix vegetation was reduced and tillers were taller,
sparser, and covered less of the substratum. The species
comprising the matrix vegetation were probably allo-
cating resources towards growing taller and capturing
light rather than producing more tillers to cover the
substratum. Phragmites is larger than all the other
plants in the marsh and shading may to be a primary
mechanism by which it excludes competing plantsfrom
the marsh.

Phragmites spread and marsh conservation

Disturbance, particularly chronically elevated nutri-
ent loads, may have long-term consequences for the
structure of plant assemblages within coastal marshes.
Field experiments have shown that the competitive hi-
erarchy among the dominant grasses and rushes in
marshes of southern New England may be reversed
when fertilized (Levine et al. 1998, Emery et al. 2001).
Under elevated nutrient conditions, the grass Spartina
alterniflora, which is typically confined to the low
marsh by superior competitors, becomes the species
that is not only the most tolerant of harsh abiotic con-
ditions, but also the best competitor. Consequently,
Levineet al. (1998) predicted that S. alterniflorawould
eventually monopolize marshes under chronic nutrient
enrichment (see also Emery et al. 2001). Similarly, the
upper limit of Phragmitesis set by theterrestrial border
of the marsh and its lower limit by its physiological
tolerance to the physical stresses associated with tidal
flooding (e.g., salinity, waterlogging). Thus under am-
bient nutrient conditions Phragmites has been histor-
ically restricted to the upper border of brackish and salt
marshes. Based on our results, brackish marshes sub-
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jected to increased clearing of vegetation and nutrient
load should result in the expansion of Phragmitesfrom
the higher to the lower elevations of the marsh. Under
increasing nutrient load, our results demonstrate that
Phragmites would outcompete J. gerardi, S. patens,
and D. spicata, and that simultaneous clearing of marsh
vegetation would accelerate the displacement of these
species. As Phragmites expands seaward under in-
creased nutrient load, S. alterniflora would be expand-
ing landward according to the model of Levine et al.
(1998) (see also Emery et al. 2001, Bertness et al.
2002), leading to a brackish marsh dominated by
Phragmites and S. alterniflora. We predict (and cur-
rently observe) that Phragmites, being the larger plant,
would also outcompete S. alterniflora (Buttery and
Lambert 1965) in brackish marshes where abiotic
stresses are not as severe as in salt marshes, eventually
resulting in a monoculture of Phragmites. In salt
marshes, abiotic conditions may simply be too extreme
for complete dominance by Phragmites and, conse-
quently, S. alterniflora would dominate the lower el-
evations of these marshes under elevated nutrient con-
ditions, with Phragmites restricted to the relatively be-
nign upper border of the marsh. Other anthropogenic
disturbances that physically elevate the marsh surface
(e.g., dumping of dredge spoil) or change the natural
salinity regime by increasing freshwater input may, ul-
timately, promote dominance by Phragmites in salt
marshes (Burdick et al. 2001).

Disturbances ultimately resulted in a greater total
aboveground biomass of plants. Thisincrease occurred
because of a shift in the relative biomass of species
with increasing disturbance, from dominance by matrix
vegetation to dominance by Phragmites, which has
greater per unit area biomass. Other studies have shown
that not only does the aboveground plant biomass tend
to be greater in marshes dominated by Phragmitescom-
pared to those without Phragmites, but so does the
standing stock of nitrogen in plants (Windham and La-
throp 1999, Meyerson et al. 2000). Disturbances, in-
cluding nutrient enrichment in this study, may thusalter
the standing stock and cycling of N in marshes by
changing their occupancy from diverse assemblages of
plants to dominance by Phragmites. Our results also
indicate that the total production of plants should in-
crease as diverse marshes become monocultures of
Phragmites, which is contrary to studies showing pos-
itive relationships between species richness and pro-
duction of wetland plants (e.g., Englehardt and Ritchie
2001). These effects of nutrient enrichment on the re-
lationship between species composition, production,
and N cycling warrant attention because they demon-
strate critical links among population, community, and
ecosystem levels of organization (Vitousek 1990).

While it is clear that fertilization and removal of
competitors can dramatically enhance the spread of
Phragmiteson alocal scale, it remains unknown wheth-
er anthropogenic modification of the coastal landscape

TODD E. MINCHINTON AND MARK D. BERTNESS

Ecological Applications
Vol. 13, No. 5

is the ultimate cause for the regional expansion of this
species throughout marshes in southern New England.
Indeed, Phragmites in this study was spreading even
under ambient conditions, indicating that this marsh
may already be impacted or some other factor is pro-
moting the spread of Phragmites. The rapid growth
observed in control quadrats in 1998 may be due to
the extremely high levels of rainfall that occurred dur-
ing the 1997-1998 EI Nifio event (Minchinton 2002b).
Alternatively, Saltonstall (2002) has found evidence
suggesting that anonnative genotype of Phragmiteshas
displaced the native type in marshes of southern New
England (in Connecticut and Massachusetts in partic-
ular), and suggested that this new strain is responsible
for the recent spread of Phragmites. It is possible that
Phragmites in the marsh from this study in Rhode Is-
land is the nonnative genotype. If this is true, then
results here show that elevated nutrient loads and phys-
ical disturbance of the marsh vegetation will further
accelerate the local spread of thisinvasive Phragmites
genotype throughout coastal marshes of southern New
England. Many coastal marshesin thisregion are small
fragments <100 m wide and surrounded by developed
land. Therefore the expansion of Phragmites at a rate
of 1.5 m per year as documented here under the most
severe disturbance conditions will have devastating
consequences within only decades. Strategies to man-
age the growth and expansion of stands of Phragmites
should focus on reducing nutrient loads and maintain-
ing natural vegetation buffers along the terrestrial—
marsh ecotone. Where Phragmites is already estab-
lished and spreading rapidly, however, removal of the
plant may be the only effective method of control.
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